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COURSE OVERVIEW 

Description 

AP Calculus AB is a rigorous course designed for students with outstanding skills and interests in mathematics who 
want to gain college credit by taking the College Board Advanced Placement examination in May. Both practical 
and theoretical approaches are presented at an accelerated pace and explorations are used extensively to engage 
and motivate students. Topics presented in this course include functions, limits, derivatives, integrals, and 
numerical approximations. Concepts are introduced using the Rule of Four (graphically, numerically, analytically, 
and verbally) so that students can continually demonstrate the connections between these representations. 
Emphasis is placed on understanding and using the mathematical modeling process to set up and solve a variety of 
problems. 
 
Graphing calculators are used throughout the course and are required on some portions of the exam. This tool is 
used to develop conjectures, connect concepts to their visual representation, solve problems and critically 
interpret and accurately report information.  

Goals 

In addition to the content standards, skills, and concepts set forth by College Board, this course will also focus on  
the AP Calculus AB and BC Mathematical Practices.The AP Calculus AB and BC Mathematical Practices are outlined 
below: 

1. Implementing mathematical processes: Determine expressions and values using mathematical procedures 
and rules 

2. Connecting Representations: Translate mathematical information from a single representation or across 
multiple representations. 

3. Justification: Justify reasoning and solutions. 
4. Communication and Notation: Use correct notation, language, and mathematical conventions to 

communicate results or solutions. 
 

Scope and Sequence 
Unit Topic Length  ( Blocks) 

Unit 0 Prerequisites for Calculus 4 
Unit 1 Limits and Continuity 12 
Unit 2 Differentiation: Definition and Basic Derivative Rules 14 
Unit 3 Advanced Differentiation Techniques 10 
Unit 4 Applications of Differentiation 17 
Unit 5 Integration and Accumulation of Change  20 
Unit 6 Application of integration  11 
Unit 7 Differential Equations  11 

Resources 

Core Text: Calculus-Graphical, Numerical, Algebraic (2012). Finney, Demana, et al. Prentice Hall  
 

Suggested Resources: Calculus (2009) Hughes-Hallet, Gleason, et al, John Wiley & Sons, Inc.; khanacademy.org; 
desmos.com; collegeboard.org; graphing calculators 

  



Piscataway Township Schools  Mathematics: Curriculum 
 

Page 2 of 22 

UNIT 0: Prerequisite for Calculus  

Summary and Rationale  
Functions and graphs form the basis for understanding mathematics and applications. This unit introduces all the 
elementary functions to be used in the course. Although the functions are probably familiar, the graphical, 
numerical, verbal, and analytical (Rule of Four) approach to their analysis may be new.  

Recommended Pacing  
4 days 

Instructional Focus 

Unit Enduring Understandings  
• Algebraic representation can be used to generalize patterns and relationships 
• Patterns and relationships can be represented graphically, numerically, symbolically, or verbally 
• Mathematical models can be used to describe and quantify physical relationships 
• Equations that model real-world data allow you to make predictions about the future. 
Unit Essential Questions  
• How can change be best represented mathematically? 
• How can patterns, relations, and functions be used as tools to best describe and help explain real‐life 

situations? 
• How are patterns of change related to the behavior of functions? 
• How can we use mathematical models to describe physical relationships? 
• What type of equation would model specific real-world data? 
Objectives  
Students will know:  
• Point-Slope form and its derivation 
• Definition of even function and odd function 
• Definition of an inverse of a function 
• Properties of logarithms 
• Parent graphs of common functions, such as, quadratic, rational, exponential, logarithmic, and trigonometric 
• The difference between solving a linear inequality and nonlinear inequality 
 
Students will be able to:  
• Write the equation of a line using Point-Slope Form 
• Identify the domain and range of a function using its graph or equation using interval notation  
• Recognize even and odd functions using its graph or equation 
• Write and evaluate composition of two functions 
• Solve exponential growth and exponential decay problems.  
• Find the inverse of a function graphically and algebraically 
• Apply properties of logarithms 
• Evaluate trigonometric functions 
• Graph functions using a variety of strategies, such as, transformations, symmetry, end behavior, asymptotes.  
• Solve nonlinear inequalities graphically and algebraically  
• Solve system of equations 
• Solve for a given variable 
• Use a graphing calculator to solve an equation and graph functions in a specified window to find zeros, points 

of intersection and solve nonlinear inequalities  

Resources 
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Core Text: Calculus-Graphical, Numerical, Algebraic (2012). Finney, Demana, et al. Prentice Hall  
 

Suggested Resources: Calculus (2009) Hughes-Hallet, Gleason, et al, John Wiley & Sons, Inc.; khanacademy.org; 
desmos.com; collegeboard.org; graphing calculators 
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UNIT 1:  Limits and Continuity 

Summary and Rationale  
The limit is a fundamental concept in higher math. A theoretical understanding of the limit allows us to work with 
infinitesimally small values, building the bridge from estimated slopes and areas to the exact values found by 
applying derivatives and integrals. Students must have a solid, intuitive understanding of limits and be able to 
compute various limits, including one-sided, limits at infinity, and infinite limits. They will apply the Rule of Four by 
working with tables and graphs in order to estimate the limit of a function at a point. Students must also 
understand how limits are used to determine continuity, a fundamental property of a function. A graphing 
calculator is utilized to find limits numerically using the table feature and graphically using the Trace feature. A 
calculator will also help students determine the asymptotic behavior of a function and investigate the continuity of 
a function.  

Recommended Pacing  
12-13 days  

AP Big Ideas 

Standard CHA - Change 

#  Outcomes 
1.A Interpret the rate of change at an instant in terms of average rates of change over intervals containing that 

instant. 
Standard LIM - Limits 

#  Outcomes  
1.A Represent limits analytically using correct notation. 

1.B Interpret limits expressed in analytic notation 

1.C Estimate limits of functions. 

1.D Determine the limits of functions using limit theorems. 

1.E Determine the limits of functions using equivalent expressions for the function or the squeeze theorem. 

2.A Justify conclusions about continuity at a point using the definition. 

2.B Determine intervals over which a function is continuous. 

2.C Determine values of x or solve for parameters that make discontinuous functions continuous, if possible. 

2.D Interpret the behavior of functions using limits involving infinity 

Standard FUN - Functions 

#  Cumulative Progress Indicator (CPI)  
1.A Explain the behavior of a function on an interval using the Intermediate Value Theorem. 

Instructional Focus 
Unit Enduring Understandings  
• Reasoning with definitions, theorems, and properties can be used to justify claims about limits. 
• Identify mathematical information from graphical, symbolic, numerical and/or verbal representations. 
• Apply appropriate mathematical procedures with and without technology. 
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• Identify an appropriate mathematical rule or procedure to evaluate a limit based on the classification of a 
given expression. 

• Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied 
(Proving Continuity, Squeeze Theorem) 

• Provide reasons or rationales for solutions or conclusions (Intermediate Value Theorem) 
Unit Essential Questions  
• How does knowing the value of a limit, or that a limit does not exist, help you to make sense of interesting 

features of functions and their graphs? 
• How does the value of a function at a point affect the limit of the function at that point? 
• How is continuity at a point related to the limit of the function at that point? 
• When there are multiple approaches, how should you choose the best method? 
Objectives  
Students will know:  
• The informal definition of a limit. Given a function, f, the limit of f(x) as x approaches c is a real number R if f(x) 

can be made arbitrarily close to R by taking x sufficiently close to (but not equal to) c.  
• Limit notation. 
• The concept of a limit includes one sided limits. 
• Limits can be evaluated from the graph of a function. 
• Cases where a limit does not exist: 

o If a function is unbounded. 
o If a function is oscillating. 
o If the one sided limits are not equal. 

• Numerical information can be used to estimate limits. 
• Algebraic properties of limits. 
• Evaluate limits using algebraic manipulation.  
• The limit of a function may be found by using the squeeze theorem. 
• Definition of continuity at a point. A function f is continuous at x = c provided that f(c) exists, the limit of f(x) as 

x approaches c exists, and f(c) equals the limit of f(x) as x approaches c.  
• Types of discontinuities: 
o Removable 
o Jump 
o Infinite (due to vertical asymptote) 
• A function is continuous on an interval if the function is continuous at each point on the interval. 
• The definition of a continuous function. 
• If a limit of a function exists at a discontinuity then it is possible to remove the discontinuity by defining or 

redefining a value at that point. 
• Asymptotic and unbounded behavior of functions can be described and explained using limits. 
• Limits at infinity describe end behavior. 
• Relative magnitudes of functions and their rates of change can be compared using limits. 
• The Intermediate Value Theorem. 
Students will be able to:  
• Represent limits analytically using correct notation. 
• Estimate limits of functions from a graph. 
• Estimate limits of functions from a table.  
• Determine the limits of functions using algebraic properties of limits. 
• Evaluate limits algebraically using equivalent expressions for the function when needed. 
• Select the appropriate procedure for evaluating limits. 
• Determine the limits of functions using the squeeze theorem. 
• Justify conclusions about continuity at a point using the definition. 
• Determine intervals over which a function is continuous. 



Piscataway Township Schools  Mathematics: Curriculum 
 

Page 6 of 22 

• Determine values of x or solve for parameters that make discontinuous functions continuous, if possible. 
• Interpret the behavior of functions using limits involving infinity. 
• Explain the behavior of a function on an interval using the Intermediate Value Theorem. 
• Use a graphing calculator to solve problems, experiment, interpret results, and support conclusions.  

Resources 

Core Text: Calculus-Graphical, Numerical, Algebraic (2012). Finney, Demana, et al. Prentice Hall  
 

Suggested Resources: Calculus (2009) Hughes-Hallet, Gleason, et al, John Wiley & Sons, Inc.; khanacademy.org; 
desmos.com; collegeboard.org; graphing calculators 
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UNIT 2:  Differentiation: Definition and Basic Rules 

Summary and Rationale  
Using derivatives to describe the rate of change of one variable with respect to another variable allows students to 
understand change in a variety of contexts. With their understanding of functions, students will recognize that the 
slopes of the tangents at the given points represent a relationship between the two quantities. Students will call 
this function the derivative of a function. The derivative is the key to modeling instantaneous change. Students 
should be able to use different definitions of the derivative, estimate derivatives from tables and graphs, and apply 
various derivative rules and properties.  Applications of the derivative include finding the slope of a tangent line to 
a graph at a point, analyzing the graph of a function, and solving problems involving rectilinear motion. 

Recommended Pacing  
13-14 days  

AP Big Ideas 

Standard CHA - Change 

#  Outcomes 
2.A Determine average rates of change using difference quotients. 

2.B Represent the derivative of a function as the limit of a difference quotient. 

2.C Determine the equation of a line tangent to a curve at a given point. 

2.D Estimate derivatives 

Standard FUN - Functions 

#  Outcomes 
2.A Explain the relationship between differentiability and continuity. 

3.A Calculate derivatives of familiar functions. 

3.B Calculate derivatives of products and quotients of differentiable functions. 

Standard LIM - Limits 

#  Outcomes 
3.A Interpret a limit as a definition of a derivative. 

Instructional Focus 
Unit Enduring Understandings  
• Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of 

change over intervals. 
• Recognizing that a function’s derivative may also be a function allows us to develop knowledge about the 

related behaviors of both. 
• Recognizing opportunities to apply derivative rules can simplify differentiation. 
• Relationships can be represented graphically, numerically, analytically, or verbally (rule of four). 
Unit Essential Questions  
• Can change occur at an instant? 
•  What is a derivative and how does it differ in various situations? 
•  What can you predict about 𝑓𝑓 given 𝑓𝑓′? 
• When there are multiple approaches, how should you choose the best method? 
• What are the advantages of having different ways to represent a derivative? 
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Objectives  
Students will know:  
• Calculus uses limits  to understand and model dynamic change. 
• The difference quotient expresses the average rate of change of a function over an interval. 
• The instantaneous rate of change of a function at x = a can be expressed by the limit of the difference quotient 

as x approaches a. 
• Notation used to express the derivative (dy/dx, f’(x), y’). 
• The derivative of a function at a point is the slope of the line tangent to a graph of the function at that point. 
• The derivative at a point can be estimated from the information given in tables or graphs. 
• The derivative of a function can be interpreted as the instantaneous rate of change with respect to its 

independent variable. 
• The derivative can be used to solve rectilinear motion problems involving position, speed, velocity and 

acceleration. 
• If a function is differentiable at a point, then it is continuous at that point. 
• A continuous function may fail to be differentiable  at a point in its domain. 
• Power functions are those that can be written as y = ax^n where n is a real number. 
• Sums, differences, and constant multiples of functions can be differentiated using derivative rules. 
• The specific rules used to find the derivatives for sine, cosine, exponential and logarithmic functions. 
• Derivatives of products or quotients of differentiable functions can be found using the product or quotient 

rule.  
• Derivatives of the remaining trigonometric functions (tangent, cotangent, secant, cosecant). 
Students will be able to:  
• Determine average rates of change using difference quotients. 
• Interpret the rate of change at an instant in terms of average rates of change over intervals containing that 

instant. 
• Represent the derivative of a function as the limit of a difference quotient. 
• Determine the equation of a line tangent to a curve at a given point. 
• Estimate derivatives using tables and graphs. 
• Interpret the meaning of a derivative in context. 
• Calculate rates of change in applied contexts. 
• Explain the relationship between differentiability and continuity. 
• Identify power functions. 
• Utilize the power rule to evaluate the derivative of a power function. 
• Utilize the constant, sum, difference, and constant multiple derivative rules. 
• Estimate the derivatives of sine, cosine, exponential, and logarithmic functions to formulate their derivative 

rules. 
• Calculate derivatives of products and quotients of differentiable functions. 
• Apply the quotient rules with trig identities to evaluate the derivatives of tangent, cotangent, second and 

cosecant. 
• Use a graphing calculator to solve problems, experiment, interpret results, and support conclusions.  

Resources 

Core Text: Calculus-Graphical, Numerical, Algebraic (2012). Finney, Demana, et al. Prentice Hall  
 

Suggested Resources: Calculus (2009) Hughes-Hallet, Gleason, et al, John Wiley & Sons, Inc.; khanacademy.org; 
desmos.com; collegeboard.org; graphing calculators 
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UNIT 3:  Advanced Differentiation Techniques 

Summary and Rationale  
In this unit students will learn advanced techniques and further applications for differentiation. Students will add 
the chain rule to their repertoire of derivative rules in order to differentiate composite functions. The chain rule 
allows for students to implicitly differentiate functions and solve problems involving related rates. In addition 
students will explore the relationship between derivatives of inverse functions, higher order derivatives (along 
with their contextual applications) and L’Hospital’s rule for evaluating limits in the indeterminate form. 

Recommended Pacing  
10-11 days  

AP Big Ideas 

Standard FUN - Functions 

#  Outcomes 
3.C Calculate derivatives of compositions of differentiable functions. 

3.D Calculate derivatives of implicitly defined functions. 

3.E Calculate derivatives of inverse and inverse trigonometric functions. 

3.F Determine higher order derivatives of a function. 

Instructional Focus 
Unit Enduring Understandings  
• The derivative of a function is defined as the limit of a difference quotient and can be determined using a 

variety of strategies. 
• There are many ways of evaluating the derivative. 
• Relationships can be represented graphically, numerically, analytically, or verbally (rule of four). 
Unit Essential Questions  
• When there are multiple approaches, how should you choose the best method? 
• What are the advantages of having different ways to represent a derivative? 
• How are the derivatives of inverse functions related? 
• In what circumstances is it necessary to apply L’Hospital’s rule?  
Objectives  
Students will know:  
• The chain rule provides a way to differentiate composite functions. 
• The chain rule is the basis for implicit differentiation. 
• The chain rule is the basis for differentiating variables in a related rates problem with respect to the same 

independent variable. 
• The derivative can be used to solve related rates problems; that is, finding a rate at which one quantity is 

changing by relating it to other quantities whose rates of change are known. 
• Corresponding points of inverse functions have reciprocal slopes (i.e. f’(a) = 1/g’(b) provided that f and g are 

inverses and f(a) = b). 
• Right triangle trigonometry can be used to formulate the derivative rules for inverse trigonometric functions. 
• Differentiating f’ produces f’’, provided the derivative of f’ exists. This process can be repeated to produce 

higher order derivatives. 
• Limits of indeterminate forms (0/0 or ∞/∞) may be evaluated using L’Hospital’s Rule. 
Students will be able to:  
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• Calculate derivatives of compositions of differentiable functions. 
• Calculate derivatives of implicitly defined functions. 
• Calculate related rates in applied contexts. 
• Interpret related rates in applied contexts. 
• Calculate derivatives of inverse functions. 
• Calculate derivatives of inverse trigonometric functions. 
• Select the appropriate procedure for calculating derivatives.  
• Determine higher order derivatives of a function. 
• Determine limits of functions that result in indeterminate forms. 
• Use a graphing calculator to solve problems, experiment, interpret results, and support conclusions.  

Resources 

Core Text: Calculus-Graphical, Numerical, Algebraic (2012). Finney, Demana, et al. Prentice Hall  
 

Suggested Resources: Calculus (2009) Hughes-Hallet, Gleason, et al, John Wiley & Sons, Inc.; khanacademy.org; 
desmos.com; collegeboard.org; graphing calculators 
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UNIT 4:  Applications of Differentiation 

Summary and Rationale  
Differential calculus is a powerful problem-solving tool precisely because of its usefulness for analyzing functions. 
In this unit students will sketch the graph of 𝑓𝑓 by determining where 𝑓𝑓 is increasing or decreasing and finding 
inflection points and extreme values. In addition, students should understand and be able to apply the Extreme 
Value Theorem and the Mean Value Theorem, and be familiar with a variety of real-world applications, including 
related rates, optimization, and growth and decay models. Finding maximum and minimum values of functions, 
called optimization, is an important issue in real-world problems. 

Recommended Pacing  
16-17 days  

AP Big Ideas 

Standard CHA - Changes 

#  Outcomes 
3.A Interpret the meaning of a derivative in context. 

3.B Calculate rates of change in applied contexts. 

3.C Interpret rates of change in applied contexts. 

3.D Calculate related rates in applied contexts. 

3.E Interpret related rates in applied contexts. 

3.F Approximate a value on a curve using the equation of a tangent line. 

Standard LIM - Limits 

CPI #  Cumulative Progress Indicator (CPI)  
#  Outcomes 

4.A Determine limits of functions that result in indeterminate forms. 

Instructional Focus 
Unit Enduring Understandings  
• Key features of functions and their derivatives can be identified and related to their graphical, numerical, and 

analytical representations. 
• Calculus is a collection of powerful ideas; not a set of rules, formulas and procedures. To learn calculus 

requires focus on the understanding of a few big ideas, not merely memorizing techniques.  
• A function’s derivative, which is itself a function, can be used to understand the behavior of the function. 
• Algebraic and numeric procedures are interconnected and build on one another to produce a coherent whole 
• Mathematical models can be used to describe and quantify physical relationships 
• Physical models can be used to clarify mathematical relationships 
Unit Essential Questions  
• How can we use mathematical models to describe physical relationships? 
• How can we use physical models to clarify mathematical relationships? 
• How can we use derivatives to solve problems?  
• What can you predict about 𝑓𝑓 and 𝑓𝑓" given 𝑓𝑓′? 
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• How do we measure something that is changing with respect to time? 

Objectives  
Students will know:  
• The first derivative of a function can provide information about the function and its graph including: 

o Intervals where the function is increasing (f’ > 0) and decreasing (f’ < 0). 
o Location of relative (local) extrema of the function. 

• The second derivative of a function provides information about the function and its graph including: 
o Intervals of upward and downward concavity. 
o Points of inflection. 

• The graph of a function is concave up (down) on an open interval if the function’s derivative is increasing 
(decreasing) on that interval. 

• The second derivative of a function may determine whether a critical point is the location of a relative (local) 
maximum or minimum. 

• When a continuous function has only one critical point on an interval and the critical point corresponds to a 
relative extrema, then that critical point is also the absolute extrema of the function on the interval. 

• The Mean Value Theorem. 
• The Extreme Value Theorem. 
• Absolute (global) extrema of a function on a closed interval can only occur at critical points or at end points. 
• Graphical, numerical and analytical information from f’ and f’’ can be used to predict and explain the behavior 

of f. 
• The derivative can be used to solve optimization problems.  
• The tangent line is the graph of a locally linear approximation of the function near the point of tangency. 
• For a tangent line approximation, the function’s behavior near the point of tangency may determine whether 

a tangent line value is an underestimate or overestimate of the corresponding function value. 
Students will be able to:  
• Justify conclusions about the behavior of a function based on the behavior of its derivatives. 
• Determine local extreme values of a function using the derivative the First Derivative Test. 
• Sketch functions based on information from f’ and f’’. 
• Justify conclusions about functions by applying the Extreme Value Theorem and the Candidates Test. 
• Justify conclusions about functions by applying the Mean Value Theorem. 
• Calculate minimum and maximum values in applied contexts or analysis of functions. 
• Interpret minimum and maximum values calculated in applied contexts. 
• Approximate a value on a curve using the equation of a tangent line. 
• Use a graphing calculator to find the derivative, global and local extreme values, inflection points, and intervals 

where the function is increasing or decreasing. 
• Use a graphing calculator to solve problems, experiment, interpret results, and support conclusions.  

Resources 

Core Text: Calculus-Graphical, Numerical, Algebraic (2012). Finney, Demana, et al. Prentice Hall  
 

Suggested Resources: Calculus (2009) Hughes-Hallet, Gleason, et al, John Wiley & Sons, Inc.; khanacademy.org; 
desmos.com; collegeboard.org; graphing calculators 
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UNIT 5:  Integration and Accumulation of Change  

Summary and Rationale  

This unit establishes the relationship between differentiation and integration using the Fundamental Theorem of 
Calculus. Students begin by exploring the contextual meaning of areas of certain regions bounded by rate 
functions. Integration determines accumulation of change over an interval, just as differentiation determines 
instantaneous rate of change at a point. Students should understand that integration is a limiting case of a sum of 
products (areas) in the same way that differentiation is a limiting case of a quotient of differences (slopes). Future 
units will apply the idea of accumulation of change to a variety of realistic and geometric applications. 

Recommended Pacing  
 19-20 days  

AP Big Ideas 

Standard CHA - Changes 

#  Outcomes 
4.A Interpret the meaning of areas associated with the graph of a rate of change in context. 

Standard LIM- Limits 

#  Outcomes 

5.A Approximate a definite integral using geometric and numerical methods. 

5.B Interpret the limiting case of the Riemann sum as a definite integral 

5.C Represent the limiting case of the Riemann sum as a definite integral. 

Standard FUN- Functions 

#  Outcomes 

5.A Represent accumulation functions using definite integrals. 

6.A Calculate a definite integral using areas and properties of definite integrals. 

6.B Evaluate definite integrals analytically using the Fundamental Theorem of Calculus. 

6.C Determine antiderivatives of functions and indefinite integrals, using knowledge of derivatives. 

6.D For integrands requiring substitution or rearrangements into equivalent forms: (a) Determine indefinite 
integrals. (b) Evaluate definite integrals 

Instructional Focus 
Unit Enduring Understandings  
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• Definite integrals allow us to solve problems involving the accumulation of change over an interval. 
• Definite integrals can be approximated using geometric and numerical methods.  
• The Fundamental Theorem of Calculus connects differentiation and integration.  
• Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration  
• The use of limits allows us to show that the areas of unbounded regions may be finite. * 
Unit Essential Questions  
• How is integrating to find areas related to differentiating to find slopes? 
• How can we use mathematical models to describe physical relationships? 
• How can we use physical models to clarify mathematical relationships? 
• What does a definite integral represent? 
• When there are multiple approaches, how should you choose the best method? 

Objectives  
Students will know:  
• The area of the region between the graph of a rate of change function of the x-axis gives the accumulation of 

change.  
• In some cases, accumulation of change can be evaluated by using geometry.  
• If a rate of change is positive (negative) over an interval, then the cumulative change is positive (negative).  
• The unit for the area or region defined by rate of change is a unit for the rate of change multiplied by the unit 

for the independent variable.  
• Definite integrals can be approximated for functions that are represented graphically, numerically, analytically, 

and verbally.  
• Depending on the behavior of a function, it may be possible to determine whether an approximation for a 

definite integral is an underestimate or overestimate for the value of the definite interval. 
• The limit of an approximating Riemann sum can be interpreted as a definite internal. 
• A Riemann sum, which requires a partition of the interval 𝐼𝐼, is the sum of the products, each of which is the 

value of the function at a point in us up in a real multiplied by the length of that’s available of the partition 
• The definite integral can be used to define new functions  
• Fundamental Theorem of Calculus, part 1 and part 2,  graphically, numerically, analytically, and verbally.  
• Properties of definite integrals.  
• An antiderivative of a function  𝑓𝑓 is a function 𝑔𝑔 whose derivative is 𝑓𝑓. 
• Differentiation rules provide the foundation for finding antiderivatives. 
• Difference between a definite and indefinite integral.  
• For a definite integral, substitution of variables requires corresponding changes to the limits of integration.  
• Techniques for finding antiderivatives include rewriting the integrand into an equivalent form. 
• An improper integral is an integral that has one or both limits infinite or has an integran that is unbounded in 

the interval of integration.  
Students will be able to:  
• Use appropriate units of measure. 
• Explain how an approximated value relates to the actual value. 
• Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate 

of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to 
solve problems.  

• Use appropriate mathematical symbols and notation, e.g., ∫ 𝑓𝑓′(𝑥𝑥) 𝑑𝑑𝑑𝑑 
• Approximate definite integrals using a left Riemann sum, a right Riemann sum, a midpoint Riemann sum, or a 

trapezoidal sum; approximations can be computed using either uniform or nonuniform partitions.  
• Determine if an approximation is an underestimate or overestimate.   
• Convert  a definite integral into the limit of a related Riemann sum and vice versa.  
• Extend the definition of a definite integral to functions with removal or jump discontinuities.  
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• Evaluate integrals algebraically using properties of integrals, reverse power rule, u-substitution, integration by 
parts, recalling derivative rules, and/or decomposing a rational function into its partial sums. * 

• Identify improper integrals.  
• Evaluate an improper integral or determine that the integral diverges. * 
• Identify an appropriate mathematical rule or procedure based on the relationship between concepts or 

processes to solve problems. 

Resources 

Core Text: Calculus-Graphical, Numerical, Algebraic (2012). Finney, Demana, et al. Prentice Hall  
 

Suggested Resources: Calculus (2009) Hughes-Hallet, Gleason, et al, John Wiley & Sons, Inc.; khanacademy.org; 
desmos.com; collegeboard.org; graphing calculators 
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UNIT 6:  Application of integration 

Summary and Rationale  

In this unit, students will learn how to find the average value of a function, model particle motion and net change, 
and determine areas, volumes, and lengths* defined by the graphs of functions. Emphasis should be placed on 
developing an understanding of integration that can be transferred across these and many other applications. 
Understanding that the area, volume, and length bc only problems studied in this unit are limiting cases of 
Riemann sums of rectangle areas, prism volumes, or segment lengths* saves students from memorizing a long list 
of seemingly unrelated formulas and develops meaningful understanding of integration. 

Recommended Pacing  
 10-11 days  

AP Big Ideas 

Standard CHA - Changes 

#  Outcomes 
4.A Interpret the meaning of areas associated with the graph of a rate of change in context. 

Standard LIM - Limits 

#  Outcomes 
5.A Approximate a definite integral using geometric and numerical methods. 

5.B Interpret the limiting case of the Riemann sum as a definite integral. 

5.C Represent the limiting case of the Riemann sum as a definite integral. 

Standard FUN - Functions 

#  Outcomes 
5.A Represent accumulation functions using definite integrals. 

6.A Calculate a definite integral using areas and properties of definite integrals. 

6.B Evaluate definite integrals analytically using the Fundamental Theorem of Calculus. 

6.C Determine antiderivatives of functions and indefinite integrals, using knowledge of derivatives. 

6.D For integrands requiring substitution or rearrangements into equivalent forms: (a) Determine indefinite 
integrals. (b) Evaluate definite integrals. 

Instructional Focus 
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Unit Enduring Understandings  
• Definite integrals allow us to solve problems involving the accumulation of change over an interval.  
• Mathematical models can be used to describe and quantify physical relationships 
• Physical models can be used to clarify mathematical relationships 
Unit Essential Questions  
• How can we use mathematical models to describe physical relationships? 
• How can we use physical models to clarify mathematical relationships? 
• When there are multiple approaches, how should you choose the best method? 
Objectives  
Students will know:  
• The formula for the average value of a function over a closed interval. 
• A function defined as an integral represents an accumulation of rate of change.  
• The definite integral of the rate of change of a quantity over an interval gives the net change of that quantity 

over the interval.  
• The definite integral can be used to express information about accumulation and net change in many applied 

contexts.  
• For a particle in rectilinear motion over an interval of time the definite integral of velocity represents a particle 

displacement over the interval of time and the definite integral of speed represents the particle’s total 
distance traveled over the interval of time.  

• Difference between displacement, total distance traveled, and position of a particle at a given time  in 
rectilinear motion.  

• Area of regions in the plane or volumes of solids a revolution around the x or y axis can be calculated with 
definite integrals. 

• Area of certain regions in the plane may be calculated using a sum of two or more definite integrals or by 
evaluating a definite integral of the absolute value of the difference of two functions.  

• Volumes of solids with square, triangular,  rectangle, or semicircular cross sections can be found using definite 
integrals and the area formulas for these shapes may be found by using definite integrals.  

• The formula to find the length of a planar curve. * 
Students will be able to:  
• Determine the average value of a function using definite integrals.  
• Determine values for positions and rates of change using definite integrals and problems involving rectilinear 

motion 
• Interpret the meaning of a definite integral in accumulation problems.  
• Determine net change using definite integrals in applied contexts.  
• Calculate areas in the plane using the definite integrals, using functions of either x or y.  
• Calculate volumes of solids with known cross-sections using definite integrals.  
• Calculate volumes of solids or revolution using definite integrals using disc method or washer method for 

solids revolved around the 𝑥𝑥-axis, 𝑦𝑦-axis, or any other horizontal or vertical line in the plane.  
• Determine the lengths of a curve in the plane defined by the function, using a definite integral. * 
• Identify an appropriate mathematical rule or procedure based on the relationship between concepts or 

processes to solve problems. 

Resources 

Core Text: Calculus-Graphical, Numerical, Algebraic (2012). Finney, Demana, et al. Prentice Hall  
 

Suggested Resources: Calculus (2009) Hughes-Hallet, Gleason, et al, John Wiley & Sons, Inc.; khanacademy.org; 
desmos.com; collegeboard.org; graphing calculators 
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UNIT 7:  Differential Equations  

Summary and Rationale  

In this unit, students will learn to set up and solve separable differential equations. Slope fields can be used to 
represent solution curves to a differential equation and build understanding that there are infinitely many general 
solutions to a differential equation, varying only by a constant of integration. Students can locate a unique solution 
relevant to a particular situation, provided they can locate a point on the solution curve. By writing and solving 
differential equations leading to models for exponential growth and decay and logistic growth, students build 
understanding of topics introduced in Algebra II and other courses. 

Recommended Pacing  
 10-11 days  

AP Big Ideas 

Standard FUN - Functions 

#  Outcomes 
7.A Interpret verbal statements of problems as differential equations involving a derivative expression. 

7.B Verify solutions to differential equations. 

7.C Estimate solutions to differential equations. 

7.D Determine general solutions to differential equations. 

7.E Determine particular solutions to differential equations. 

7.F Interpret the meaning of a differential equation and its variables in context. 

7.G Determine general and particular solutions for problems involving differential equations in context. 

Instructional Focus 
Unit Enduring Understandings  
 
• Solving differential equations allows us to determine functions and develop models.  
• Differential equations can be solved algebraically or graphically. 
Unit Essential Questions  
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• What does a slope field represent? 
• When there are multiple approaches, how should you choose the best method? 

Objectives  
Students will know:  
• Differential equations relate a function of an independent variable and the function's derivatives. 
• Derivatives can be used to verify that a function is a solution to the differential equation.  
• There may be infinitely many  general solutions to a differential equation.  
• Slope field is a graphical representation of a differential equation on a finite set of points in the plane.  
• Slope fields provide information about the behavior of solutions to first order differential equations. 
• Solutions to differential equations are functions or families of functions.  
• Euler’s method provides a procedure for approximating a solution to a differential equation.  * 
• Some differential equations could be solved by separation of variables.  
• Anti-differentiation can be used to find general solutions to differential equations.  
• A general solution may describe infinitely many solutions to the differential equation. There is only one 

particular solution passing through a given point. 
• Solutions to differential equations may be subject to domain restrictions.  
• Antidifferentiation can be used to find specific solutions to differential equations with given initial conditions, 

including applications to motion along a line and exponential growth and decay 
• The model for exponential growth and decay that arises from the statement, “The rate of change of a quantity 

is proportional to the size of the quantity” is  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘. 

• The exponential growth and decay model, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘, with initial condition 𝑦𝑦 = 𝑦𝑦0when 𝑡𝑡 = 0, has solutions of 
the form 𝑦𝑦 = 𝑦𝑦0𝑒𝑒𝑘𝑘𝑘𝑘.  

• The model for logistic  growth that arises from the statement, “The rate of change of a quantity is jointly 
proportional to the size of the quantity and the difference between the quantity and the carrying capacity” is  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘( 𝑎𝑎 − 𝑦𝑦).* 
• The logistic differential equation and initial conditions can be interpreted without solving the differential 

equation.* 
• The carrying capacity of a logistic differential equation as the independent variable approaches infinity can be 

determined using the logistic growth model and initial conditions.* 
• The value of the dependent variable in a logistic differential equation at the point when it is changing fastest 

can be determined using the logistic growth model and initial conditions.* 
Students will be able to:  
• Interpret verbal statements of problems as differential equations involving a derivative expression.  
• Verify solutions to differential equations. 
• Construct slope fields and interpret slope fields as visualizations of differential equations.  
• Use technology to analyze slope fields and recognize a solution and its domain, e.g. Desmos.com.   
• Estimate solutions to differential equations graphically using slope fields and numerically using Euler’s 

Method.* 
• Determine general and particular solutions to differential equations (for problems involving differential 

equations in context).  
• Interpret the meaning of a differential equation and its variables in context.  
• Interpret the meaning of the logistic growth model in context. * 
• Determine the carrying capacity and when the value of the dependent variable in a logistic differential 

equation at the point when it is changing fastest graphically and algebraically.  
• Apply appropriate mathematical rules or procedures, with and without technology.  

Resources 

Core Text: Calculus-Graphical, Numerical, Algebraic (2012). Finney, Demana, et al. Prentice Hall  
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Suggested Resources: Calculus (2009) Hughes-Hallet, Gleason, et al, John Wiley & Sons, Inc.; khanacademy.org; 
desmos.com; collegeboard.org; graphing calculators 

 
 

 

 


